Image Hosted by ImageShack.us

   
  Robotic Madness
  Components
 

Components used in my robotics


This section is dedicated to components that can be used in robotics, There is such a variety of components such that I cannot cover them all, So here are just a few of the various components that I have used, For those that are not familiar with components I hope this will help you when you build your bots.

Capacitors


Definition:
From the more technical point of view, capacitors store energy in the form of an electric field. A simple capacitor consists of two conductive plates separated by an insulating "dielectric". Even more technical, capacitance is directly proportional to the surface area of these plates and inversely proportional to the separation between them.

From a more practical perspective, I tend to think of capacitors in one of two ways depending on the application. In situations where the ability to store energy is being directly exploited, such as power supply decoupling and RC timing circuits, it is useful to think of a capacitor as it is described above. As a low capacity and inefficient rechargeable cell.

In applications where a capacitor is interacting with an AC signal it can be more useful to think of a capacitor as a device which passes AC signals of frequencies proportional to the capacitance value while impeding DC signals.

The capacity of a capacitor is measured in Farads, abbreviated with a capital F. The Farad is actually a very large unit so most common capacitor values are stated in picofarads (pF), nano Farads (nF) or micro Farads (µF).



Disc Ceramic: While they are limited to quite small values, disc ceramics boast small and solid construction with comparatively high voltage ratings. They range from 1pF to 0.47µF and are not polarised. This type can often be used to replace a polyester capacitor of the same value



Radial Electrolytic: Used for all values above 0.1µF. Electrolytics have lower accuracy and temperature stability than most other types and are almost always polarised. It's usually best to only use an electrolytic when no other type can be used, or for all values over 100µF. Cheap electrolytics are usually made from plastic and rubber and therefore melt easily during soldering.

Axial Electrolytic: The same as other electrolytics but the leads emerge from each end, rather than the same end as in the radial types.



Polyester "Green Caps":
Ranging from 0.01µF to 5µF polyester capacitors have similar properties to disc ceramics with some larger values and a slightly larger construction. They are not polarised.

MKT Polyester: A variation of polyester capacitors used where price matters less than performance. High temperature stability and accuracy land MKT capacitors in higher end audio circuits and power supplies. They range from 1nF to about 10µF. (values over 1µF are quite expensive) MKTs are not polarised.



Tantalum: Tantalum capacitors pack a large capacity into a relatively small and tough package compared to electrolytics, but pay for this in voltage ratings. The device pictured above is 100µF (like the electrolytic next to it) but is rated at 3.6V, compared to 16V. They are often polarised and range from 0.1µF to 100µF.




Polyester Film - This capacitor uses a thin polyester film as a dielectric. Not as high a tolerance as polypropylene, but cheap, temperature stable, readily available, widely used. Tolerance is approx 5% to 10%. Can be quite large depending on capacity or rated voltage and so may not be suitable for all applications.

Philips Marking SchemeEIA Class II Capacitor Codes


Transistors

Definition:
For most practical purposes, (though likely few technical ones) bipolar transistors are electrically activated amplifying switches. Allow a certain current to flow into one lead (called the "base") and a proportionally larger current will flow through the remaining two leads. (from the "collector" to the emitter") Limit this current and use it to drive a load (LED, relay... etc) and you've got an electronic switch. This basic concept is good enough for most applications, assuming you can figure out which lead is which.

Transistor Types:
There are two different types of bipolar transistor, the NPN and PNP. The schematic symbols for each are below. Note that the NPN transistor has an arrow pointing out the emitter, which the PNP has an arrow pointing in.







Resistors


Definition:
As the name implies, a resistor imposes a resistance (often called impedance) on current flow. I'm sure most people reading this will have, at some stage, encountered the dangers of excess current and the damage it can do to. Thus, the resistors most common use is to limit current to safe levels. Cheap insurance....

Value Identification:
The value of a resistor is identified by a series of at least 4 colored bands. This because on components as small as 0.25W resistors a printed value would be very difficult to read and very easy to rub off.

The code itself is quite simple; The first two bands represent the two (or three) most significant figures of the resistors value, the next band is the multiplier or number of zeros, and the last band is the tolerance. (how far off the stated value the part could actually be) The color code is given below.

Resistor Color Chart (IEC)
This resistor is quite obviously 120KΩ.


The gold and silver multipliers will make the value smaller. The color code "Brown-Green -Gold equals 15 x 0.1, or 1.5Ω.

Tolerance is better described as accuracy. If you have a 1KΩ resistor with ±5% tolerance, you could have a resistor with a value anywhere between 950Ω and 1050Ω. (50Ω is 5% of 1000Ω) I've never seen a 10% tolerance resistor myself, and would probably decline to use it in most cases. If you can afford an extra 5c per piece, 1% tolerance resistors are a good rule of thumb. (in my opinion anyway)

Occasionally you will find resistors marked in a different fashion. A resistor with a single black band is a "0Ω" resistor or an expensive wire link. Some high power resistors (over 1W) may have their value printed on them explicitly or in numeric IEC code.which is the same as above but it uses numbers, not colors. This is quite rare.

Ohm's Law:
Below is something a surprising number of electronic enthusiasts do not understand, or use. Yes, it's Ohms Law again. Basic, but somewhat fundamental to electronics....


Ohms Law and Formulas


Using ohms law, we can quickly calculate the required resistance to obtain a specific maximum current at a certain voltage. Say you have an high intensity LED, one of those cool electric blue ones, and you want to get the best light show you can without toasting the LED.

Somewhere on the complicated looking piece of paper often supplied with high performance LEDs will be a maximum forward current rating, usually along the lines of 40mA. To find the resistor needed, simply divide the supply voltage (which can be anything up to the LEDs breakdown voltage) by the maximum forward current. At 13.8V, (in a car) a 345Ω resistor is required. A good idea would be to take this up to the more readily available 390Ω rather than 330Ω. (which would result in more than 40mA) From ohms law again, we can find that 390Ω will allow 35.4mA to flow.

Of course, ohms law is not limited to LEDs. It can be used in any situation where two of the three variables are known. As voltage is almost always known, I mostly use ohms law to determine resistor values.

Variable resistors



Variable resistors have a dial, knob, or screw that allows you to change their resistance. The value of a variable resistor is given as it's highest resistance value. For example, a 500 ohm variable resistor can have a resistance of anywhere between 0 ohms and 500 ohms. A variable resistor may also be called a potentiometer (pot for short).

LDR's Photoresistors




Photoresistors, as their name suggests, are resistors whose resistance is a function of the amount of light falling on them. Their resistance is very high when no light is present (up to millions of Ohms), and significantly lower when they are illuminated (hundreds of Ohms). These are also often called Light-dependent Resistors (LDRs) and Cadmium-Sulfide (CDS) cells.

Voltage regulators

Voltage Regulator IC's have various uses, but are usually used for feeding 5V to anything which uses digital logic. Voltage regulators can be easily bought as an IC so you do not need to make one on your own . . . unless of course you have crazy power or
voltage requirements - such as for robots with ray guns for eyes.
Some examples below are the LM323 5amp can, LM350T, LM 723 Dip, LM7805 To3.




IR Detectors


The Sharp IR Range Finder is probably the most powerful sensor available to the everyday robot hobbyist. It is extremely effective, easy to use, very affordable ($10-$20), very small, good range (inches to meters), and has low power consumption.

How it Works
The Sharp IR Range Finder works by the process of triangulation. A pulse of light (wavelength range of 850nm +/-70nm) is emitted and then reflected back (or not reflected at all). When the light returns it comes back at an angle that is dependent on the distance of the reflecting object. Triangulation works by detecting this reflected beam angle - by knowing the angle, distance can then be determined.
Sharp IR Range Finder Triangulation
The IR range finder reciever has a special precision lens that transmits the reflected light onto an enclosed linear CCD array based on the triangulation angle. The CCD array then determines the angle and causes the rangefinder to then give a corresponding *analog value to be read by your microcontroller. Additional to this, the Sharp IR Range Finder circuitry applies a modulated frequency to the emitted IR beam. This ranging method is almost immune to interference from ambient light, and offers amazing indifference to the color of the object being detected. In other words, the sensor is capable of detecting a black wall in full sunlight with almost zero noise.

Also here in the photo are other IR LEDS, and detectors and emitters, Including a QTI line follower sensor mid right.

IC's Intergrated circuits

http://www.kpsec.freeuk.com/gates.htm#not

LED Displays

LED displays are packages of many LEDs arranged in a pattern, the most familiar pattern being the 7-segment displays for showing numbers (digits 0-9). The pictures below illustrate some of the popular designs:

Example: LED Circuit symbol: LED circuit symbol

 

Function

LEDs emit light when an electric current passes through them.

 

Connecting and soldering

LED connections LEDs must be connected the correct way round, the diagram may be labeled a or + for anode and k or - for cathode (yes, it really is k, not c, for cathode!). The cathode is the short lead and there may be a slight flat on the body of round LEDs. If you can see inside the LED the cathode is the larger electrode (but this is not an official identification method).

LEDs can be damaged by heat when soldering, but the risk is small unless you are very slow. No special precautions are needed for soldering most LEDs.

Testing an LED

Testing an LED

Never connect an LED directly to a battery or power supply!
It will be destroyed almost instantly because too much current will pass through and burn it out.

LEDs must have a resistor in series to limit the current to a safe value, for quick testing purposes a 1kohm resistor is suitable for most LEDs if your supply voltage is 12V or less. Remember to connect the LED the correct way round!



Colors of LEDs

LED colours LEDs are available in red, orange, amber, yellow, green, blue and white. Blue and white LEDs are much more expensive than the other colors.

The color of an LED is determined by the semiconductor material, not by the coloring of the 'package' (the plastic body). LEDs of all colors are available in uncolored packages which may be diffused (milky) or clear (often described as 'water clear'). The colored packages are also available as diffused (the standard type) or transparent.

 

Tri-color LEDs

Tri-colour LED The most popular type of tri-color LED has a red and a green LED combined in one package with three leads. They are called tri-color because mixed red and green light appears to be yellow and this is produced when both the red and green LEDs are on.

The diagram shows the construction of a tri-color LED. Note the different lengths of the three leads. The center lead (k) is the common cathode for both LEDs, the outer leads (a1 and a2) are the anodes to the LEDs allowing each one to be lit separately, or both together to give the third color.

Bi-color LEDs

A bi-color LED has two LEDs wired in 'inverse parallel' (one forwards, one backwards) combined in one package with two leads. Only one of the LEDs can be lit at one time and they are less useful than the tri-color LEDs described above.


 




LED's come in a variety of sizes, 3mm,5mm,10mm,20mm and a vast range of lumins [brightness].

Relays

A relay is an electrically operated switch. Current flowing through the coil of the relay creates a magnetic field which attracts a lever and changes the switch contacts. The coil current can be on or off so relays have two switch positions and they are double throw (changeover) switches.

Relays allow one circuit to switch a second circuit which can be completely separate from the first. For example a low voltage battery circuit can use a relay to switch a 230V AC mains circuit. There is no electrical connection inside the relay between the two circuits, the link is magnetic and mechanical.

The coil of a relay passes a relatively large current, typically 30mA for a 12V relay, but it can be as much as 100mA for relays designed to operate from lower voltages. Most ICs (chips) cannot provide this current and a transistor is usually used to amplify the small IC current to the larger value required for the relay coil. The maximum output current for the popular 555 timer IC is 200mA so these devices can supply relay coils directly without amplification.

Relays are usually SPDT or DPDT but they can have many more sets of switch contacts, for example relays with 4 sets of changeover contacts are readily available. For further information about switch contacts and the terms used to describe them please see the page on switches

Most relays are designed for PCB mounting but you can solder wires directly to the pins providing you take care to avoid melting the plastic case of the relay.

The supplier's catalogue should show you the relay's connections. The coil will be obvious and it may be connected either way round. Relay coils produce brief high voltage 'spikes' when they are switched off and this can destroy transistors and ICs in the circuit. To prevent damage you must connect a protection diode across the relay coil.

The animated picture shows a working relay with its coil and switch contacts. You can see a lever on the left being attracted by magnetism when the coil is switched on. This lever moves the switch contacts. There is one set of contacts (SPDT) in the foreground and another behind them, making the relay DPDT.

working relay

Relay showing coil and switch contacts

 



 

Protection diode for a relay

Protection diodes for relays

Signal diodes are also used with relays to protect transistors and integrated circuits from the brief high voltage produced when the relay coil is switched off. The diagram shows how a protection diode is connected across the relay coil, note that the diode is connected 'backwards' so that it will normally NOT conduct. Conduction only occurs when the relay coil is switched off, at this moment current tries to continue flowing through the coil and it is harmlessly diverted through the diode. Without the diode no current could flow and the coil would produce a damaging high voltage 'spike' in its attempt to keep the current flowing.



Bridge rectifiers



There are several ways of connecting diodes to make a rectifier to convert AC to DC. The bridge rectifier is one of them and it is available in special packages containing the four diodes required. Bridge rectifiers are rated by their maximum current and maximum reverse voltage. They have four leads or terminals: the two DC outputs are labeled + and -, the two AC inputs are labeled ~.

 


Bridge Rectifier photograph © Rapid Electronics Bridge Rectifier photograph © Rapid Electronics Bridge Rectifier photograph © Rapid Electronics Bridge Rectifier photograph © Rapid Electronics Bridge Rectifier photograph © Rapid Electronics





Operation of a Bridge Rectifier

Bridge rectifier












Example: Diodes Circuit symbol: Diode circuit symbol

 

Function

Diode characteristic Diodes allow electricity to flow in only one direction. The arrow of the circuit symbol shows the direction in which the current can flow. Diodes are the electrical version of a valve and early diodes were actually called valves.

 

Forward Voltage Drop

Electricity uses up a little energy pushing its way through the diode, rather like a person pushing through a door with a spring. This means that there is a small voltage across a conducting diode, it is called the forward voltage drop and is about 0.7V for all normal diodes which are made from silicon. The forward voltage drop of a diode is almost constant whatever the current passing through the diode so they have a very steep characteristic (current-voltage graph).

 

Reverse Voltage

When a reverse voltage is applied a perfect diode does not conduct, but all real diodes leak a very tiny current of a few µA or less. This can be ignored in most circuits because it will be very much smaller than the current flowing in the forward direction. However, all diodes have a maximum reverse voltage (usually 50V or more) and if this is exceeded the diode will fail and pass a large current in the reverse direction, this is called breakdown.

Signal diodes (small current)

Signal diodes are used to process information (electrical signals) in circuits, so they are only required to pass small currents of up to 100mA.

General purpose signal diodes such as the 1N4148 are made from silicon and have a forward voltage drop of 0.7V.

 

 

Germanium diodes such as the OA90 have a lower forward voltage drop of 0.2V and this makes them suitable to use in radio circuits as detectors which extract the audio signal from the weak radio signal.

For general use, where the size of the forward voltage drop is less important, silicon diodes are better because they are less easily damaged by heat when soldering, they have a lower resistance when conducting, and they have very low leakage currents when a reverse voltage is applied.


 


Zener diodes


 

Example: Zener diode Circuit symbol: Zener diode circuit symbol
a = anode, k = cathode

Zener diode circuit Zener diodes are used to maintain a fixed voltage. They are designed to 'breakdown' in a reliable and non-destructive way so that they can be used in reverse to maintain a fixed voltage across their terminals. The diagram shows how they are connected, with a resistor in series to limit the current.

Zener diodes can be distinguished from ordinary diodes by their code and breakdown voltage which are printed on them. Zener diode codes begin BZX... or BZY... Their breakdown voltage is printed with V in place of a decimal point, so 4V7 means 4.7V for example.

Zener diodes are rated by their breakdown voltage and maximum power:

  • The minimum voltage available is 2.7V.
  • Power ratings of 400mW and 1.3W are common.

I hope this helps with selecting your components for your project.

2007 © Robosapienv2-4mem8

 

 
 
  Today, there have been 25 visitors (25 hits) on this page! Copyright 2007  
 
Welcome visitor
free counters
This website was created for free with Own-Free-Website.com. Would you also like to have your own website?
Sign up for free